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Abstract
Introduction and objective. Environmental lead (Pb) is a serious public health problem. At high levels, Pb is devastating 
to almost all organs. On the other hand, it is difficult to determine a safe level of exposure to Pb. More than 90% of the Pb in 
the adult human body and 70% in a child’s body is stored in the bones. In the presented study, the effects of lead exposure 
on bones were studied for rats treated orally with Pb acetate in drinking water for 14 days. The hypothesis was tested that 
lead exposure negatively affects bone structure.  
Materials and methods. Femur strength was measured in a three-point bending test, whereas infrared spectroscopy (FTIR) 
was used to measure molecular structural changes.  
Results. Lead significantly decreased the ratio of area of two types of vibrational transitions, which are highly specific to 
mineral to matrix ratio. The results of the biomechanical study show that femurs of rats treated by Pb-acetate appeared to 
be weaker than bones of the control group, and may produce a condition for the development of higher risk of fractures. 
Additionally, a great difference in body mass was observed between control and the Pb acetate-treated groups.  
Conclusions. The lower bone mineral content and the weaker mechanical properties of bones from Pb-treated rats are 
associated with the pathologic state dependent of the exposure of lead.
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INTRODUCTION

Lead exposure is an important public health problem, 
especially in the urban environment [1], and even a low-dose 
is hazardous [2]. Lead-contaminated dust and lead-based 
paints are the main sources of lead poisoning. However, 
there are many other sources, including: ceramic glazes, 
electronic waste, cosmetics, toys, water pipes, solder in 
canned food and lead from soils [3, 4]. Clinical and science 
studies have suggested that lead is devastating to the human 
body. Lead poisoning accounts for about 0.6% of the global 
burden of disease [5]. Lead enters the human body from 
the environment by inhalation and through the digestive 
system. Even small amounts of lead are accumulated in the 
kidneys, liver, brain, lungs and muscles. However, 95% of lead 
in the body is deposited in the bones [6, 7]. Accumulation 
of lead in the skeleton begins during foetal development 
and continues throughout adulthood [8]. From calcified 
tissue, Pb is released slowly, depending on bone turnover 
rates. According to Rabinowitz et  al. [9], the elimination 
half-life of Pb in cortical bone is approximately 10–30 years. 
The retention and absorption of Pb appear to be greater 
in children and infants than in adults. Numerous studies 
have demonstrated that lead is transferred from the mother 
to the foetus, and showed that elevated blood levels of Pb 
in pregnant woman can cause premature birth, low birth 

weight, foetal malformation, and subsequent developmental 
delays in the infants [10, 11, 12]. The most sensitive targets 
for lead toxicity are the nervous system, the haematological 
systems, and the kidneys. Exposure to high amounts of lead 
resulting in a high level in the blood (>4.8 µmol/l) can cause 
acute toxic encephalopathy [13].

The aim of the presented study was evaluation of the changes 
in the bone tissue in rats intoxicated with lead acetate. To 
determine the possibility of bones quality reduction by Pb, 
two studies were conducted: biomechanical strength assay 
and FTIR spectroscopy measurement.

MATERIALS AND METHOD

All of the experiments were carried out on N=16 male Wistar 
rats sexually mature (three months) from a laboratory farm 
in Rembertów (Warsaw, Poland) divided into two groups, 
as follows: (C) N=8 control rats and (Pb) N=8 lead acetate-
treated rats. The study rats were kept in the same animal 
room under constant temperature (22 °C). Food and water 
were freely available in the home cages. Animals from the 
study group were intraperitoneally injected with lead acetate. 
An aqueous solution of lead acetate (15 mg/kg body weight) 
was administered to rats once daily for 14 consecutive days. 
The control rats received aqua pro injection in the constant 
volume of 0.5 ml/100g body weight. On the 24th day the 
animals were decapitated. The same femur was used for 
biomechanical and spectroscopy measurements. Studied 
bones were dissected, cleaned of soft tissue and kept at 
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–15 °C. All experimental procedures were approved by the 
Local Ethics Committee at the Medical University in Lublin, 
Poland.

Fourier-transform infrared spectra were recorded with 
Nicolet 6700 FTIR spectrometer from the Thermo Scientific 
Company (Waltham, MA, USA). To record the FTIR 
spectrum of each sample, 1 mg of the powder of rat femoral 
head was mixed with 200mg of KBr and compressed into 
a pellet for FTIR analysis. The femurs were dried before 
FTIR measurements. The spectra were obtained in the range 
400–4000  cm–1, with a frequency resolution of 4  cm–1 in 
the transmission mode. For each sample, 16 scans were 
accumulated, Fourier transformed and averaged. Background 
spectra were collected under the identical condition for each 
sample. Bone ashes were recorded at the same conditions 
as described previously. Data analysis and deconvolution 
of FTIR spectra were carried out with GRAMS software 
(Galactic Industries Corporation, Salem, NH, USA). The 
amid region, phosphate and carbonate region of the FTIR 
spectrum of rat femoral head were fitted with both Gaussian 
and Gaussian-Lorentzian component bands. The accuracy 
of the component band frequency determination was higher 
than 0.1 cm–1. The sample was reduced to ash in a muffle 
furnace. Bone lead and bone control were ashed for 24 h at 
637 °C. Ash mass and FTIR spectra were recorded.

The whole bone biomechanical parameters were measured 
with the 3-point bending strength test using Lloyd LRX 
tensile testing machine (Lloyd Instruments, Bognor Regis, 
West Sussex, UK), as described previously [14]. Bones were 
frozen and stored at –15 °C. The femurs were thawed at room 
temperature 12 hours before the mechanical test. Individual 
femurs were placed in a customized holder with the span 
between supports fixed at 2 cm, and the crosshead lowered 
at a constant speed of 2 mm/min until the femur fractured. 
The maximum load (Fmax) that fractures the femoral shaft 
and deflection corresponding to the maximum force (lmax) 
were generated from the load-displacement curves (Fig. 1. 
The stiffness of the bone shaft (H) was defined as the slope of 
a linear region of the load-displacement curve. Additionally, 

the force at the limit of elasticity (Fe), the deflection of femur 
at the limit of elasticity (le), and the energy stored in the 
bone without resulting in its permanent deformation (W), 
modulus of elasticity (E) were determined.

Statistical analysis. FTIR spectral parameters and 
biomechanical parameters are reported as mean  ±  S.D 
(standard deviation). Statistical significance was determined 
using the Student’s Test where a p values equal to or less 
than 0.05 were accepted as significantly different from the 
control group.

RESULTS

Initial body mass did not differ significantly between control 
and Pb acetate-treated animals. Consequently, body mass 
of rats was determined after 0, 7 and 14 days of lead acetate 
administration. Table 1 shows that Pb treatment significantly 
affected body mass. The greatest difference in body mass was 
observed during 7-day and 14-day of treatment. Experimental 
rats lost about 5% of their initial body mass during that 
period. The final weight measurement was conducted on 
the last day (10 days after last lead acetate administration). 
A clear difference was observed between the control and 
experimental group. The control rats increased body mass 
by about 39% while the Pb-treated rats only about 5%. In 
the presented study, a significant decrease (p=0.0107) was 
also observed in the density of dry mass of bones, which 
was determined after 24 hours bone heating at 105 °C 
temperature. The density of dry mass of Pb-exposed bone was 
11% lower than the dry density of control bone. The transverse 
diameter (dt) and conjugate diameter (dc) of femur in the plane 
parallel to the loading force were also different between the 
control and Pb acetate-treated group. Both femoral external 
diameters of rats treated by Pb-acetate (dt=4.35±0.30mm and 
dc=4.02±0.19mm) were smaller than those of the normal rats 
(dt=3.57±0.50mm and dc =3.08±0.17mm).

Infrared spectroscopy was used to measure molecular 
changes in the Pb acetate-treated bones. FTIR spectra 
of the processed rat femoral head samples are shown in 
Fig.  2. Two bands were examined to obtain information 
about the inorganic and organic components of rat femoral 
head. Integrated area of the PO4

3- phosphate stretching peak 
and area of the protein C=0 stretching (amid I) peak were 
calculating to determine the relative ratio of mineral to matrix 
phase (Fig. 3) [15]. The mineral to matrix ratio is indicative of 
the relative quantity of inorganic components in bones and 

Table 1. Increases in body weight of animals from experimental (E) and 
control (C) groups

day of 
experiment

C E

significance 
levels (p)body 

weight [g]

standard 
deviation 

(SD)

body 
weight [g]

standard 
deviation 

(SD)

 0 225 4.6 222 2.9 p=0.6986

 7 256 5.9 211 3.6 p<0.001

14 277 9.0 212 9.0 p=0.0002

19 305 12 228 15 p=0.0012

24 312 8.5 235 5.6 p<0.0001

Figure 1. A typical force-displacement curve of the rat femur  with indication of 
respective parameters
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is related to the ash content of studied femurs (Fig. 4). Pb 
significantly (p=0.01) decreased the mineral to matrix ratio. 
These findings are in agreement with the results reported 
in [16]. The area of the CO2

–3 peak and the PO4
3- phosphate 

stretching peak were calculating to determine the relative 
carbonate content which plays a significant role in bone 
resorption. In contrast to the level of mineralization, lead 
exposure did not affect the relative carbonate substitution 
into mineral lattice. This result was confirmed by the analysis 

of FTIR spectrum of bone ash. The presented results indicate 
that the ash of rat femoral heads from Pb-exposed rats 
exhibited the same level of carbonate substitution in the 
hydroxyapatite crystal as control group. The ratio of band 
1,460 cm–1 to band 1,040cm–1, respectively, was associated 
with the carbonate band with the phosphate group, was not 
significantly different in both groups. However, a significant 
difference (p<0.0001) was found in ash mass for control 
(255±6 mg) and lead treated bone (183±3mg).

In order to determine the relation of bone mineralization 
to differences in bone strength, femurs were tested in bending 
measurement. The biomechanical parameters determined 
for both groups are shown in Tab. 2. In Pb acetate-treated 
rats, significant decreases were observed in maximum load 

Table 2. Mechanical parameters of femoral shafts (values expressed 
as mean±S.D) and significance levels between control group (C) and 
experimental group (E)

parameter

C E

significance 
levels (p)mean

standard 
deviation 

(SD)
mean

standard 
deviation 

(SD)

Fmax [N] 104 12 72 21 p=0.0025

Fe [N] 88 13 65 14 p=0.0040

lmax [mm] 0.70 0.05 0.80 0.08 p=0.0096

le [mm] 0.49 0.06 0.51 0.06 p=0.5190

W [mJ] 17.6 4.3 13.5 3.4 p=0.0516

H [N/mm] 226 11 168 25 p=0.0459

E [MPa] 46.0 4.5 40.2 3.3 p=0.0107

Figure 4. Plots of mineral to matrix ratio (A) and carbonate to phosphate ratio 
(B) for control and Pb acetate treated bones. Values are reported as mean ± SD. 
Significance is indicated p=0.01 in the case of mineral to matrix ratio and p=0.06 
in the case of carbonate to phosphate ratio

Figure 2. FTIR spectra of rat femoral head obtained from the control and lead-
treated rat.

Figure 3. Curve-fitting analysis of the FTIR spectra for the control (A, C) and lead-
treated (B, D) bones with the Gaussian components. Raw spectrum (thick solid 
line), curve-fitting spectrum (dashed line)
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(–30%), force at the limit of elasticity (–26%), stiffness (–26%) 
and modulus of elasticity (13%) in comparison to the control 
group. Ronis et  al. [17] also demonstrated the reduction 
in bone strength in Pb-treated rats. The biomechanical 
properties of bones include their stiffness and strength 
and elasticity are determined by its microarchitecture, its 
geometry (shape, size) and the thickness of the cortical layer. 
Under loading conditions, the possible fractures occur on 
the shaft. It was found that the thickness of the femoral shaft 
was significantly smaller in rats which had been Pb acetate-
treated for 14 weeks, than that in the control rats.

DISCUSSION

FTIR technique is a known powerful tool for diagnosing bone 
disease that alters calcified tissue and provides information 
on the average chemical composition, including collagen 
phase and mineral structure changes of the sample [18, 
19]. In the presented study, differences have been shown 
in calcified tissue composition between lead-treated and 
control bones. Lead significantly decreased the mineral 
to matrix ratio in lead-intoxicated bones. In addition, the 
observed biomechanical differences, as measured by three-
point bending test, suggest that mineral to matrix ratio is 
one of the determinants of bone strength.

Osteoporosis is a disease that causes weakness of the bone, 
characterized by low bone mass associated with the high 
risk of fractures [20]. Several studies report that increased 
lead exposure is associated with a decrease in bone mineral 
density [21, 22]. Presented in this study, Pb-exposure results 
suggest loss of the bone inorganic components, which give 
bone its strength. Lower bone density, lower bone mineral 
content and weaker mechanical properties of bone in lead-
treated rats, seem to be associated with the pathologic state 
dependent of the exposure of lead acetate.

In fact, the probable mechanisms of the Pb toxicity in bone is 
the sum of several processes [23]. In brief, the Pb may directly 
or indirectly alter regulation of hormones, which modulate 
bone cell function, particularly 1,25-dihydroxyvitamin D3 
[24]. Additionally, Pb impairment of bone matrix production 
was also reported [25]. Finally, the Pb has high affinity for 
the typical calcium-binding sites and may substitute calcium, 
magnesium, and phosphorus content. Mineralization of 
bone, which is essential for its strength, is a complex process 
in which apatite crystals are placed in the matrix. Our 
presented results showing a decrease in bone density and 
reduction of mineral to matrix ratio indicate a defective 
mineralization process in lead-exposed rats.

CONCLUSION

In conclusion, the presented results indicate that Pb has 
a determinant impact in bones which is manifested by 
biochemical, structural and biomechanical lesions. Moreover, 
they indicate an absolute necessity to look for factors and 
methods to protect the organism from the accumulation of 
lead in the bones. Finally, because of rapid industrialization, 
much works needs to be done to the reduction of exposure 
to lead. This can be achieved, among other things, by 
understanding that exposure to environmental lead is serious 
public health hazard.
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